

consultants Establishe	ed DNAPL Tech Limitations co	nologies and The ontinued	
Technology	Advantages	Limitations	
Soil:			
Dig and Dump (D&D)	Certainty that remedial objectives are achieved. Rapid.	No treatment - transfers contamination. Requires removal of surface plant and other infrastructure. Increasingly costly especially in UK due to escalating Landfill Tax	
SVE	<i>In situ</i> removal – less intrusive than D&D.	Requires off gas treatment. Longer treatment compared to D&D. Poor or no treatment in lower permeability zones.	
Soil & Groundwater:			
Vacuum Enhanced Recovery (VER)	<i>In situ</i> removal – less intrusive than D&D. Simultaneous soil and groundwater treatment.	No better than P&T in highly permeable aquifers due to excessive groundwater abstraction. Less effective in lower permeability zones.	
CONTAMINATED LAND: APPLICATION	S IN REAL ENVIRONMENTS	© CL:AIRE 9/2011	

Ge	osyntec ^D consultants Establis	hed DNAPL Te Limitations	chnologies and The continued	Geoscience Əir
	Technology	Advantages	Limitations	
	Groundwater:			
	Pump & Treat	Simple technology, less reliant on specialist suppliers. <i>In situ</i> technology.	Long treatment time and high cost. Likely will not meet treatment goals in sensible timeframe. Biofouling and associated performance loss in abstraction wells.	
	Air Sparging	Simultaneous stripping and enhanced degradation of contaminants that degrade aerobically. Many DNAPLs readily partition to vapour phase and therefore are treatable by AS.	Requires suitable overlying formation for off gas collection Requires off gas treatment. Poor treatment in heterogeneous formations due to lower permeability zones and preferential air flow pathways. Causes redox increase that may inhibit anaerobic degradation of chlorinated solvents.	<mark>l</mark> : AIRE
17	CONTAMINATED LAND: APPL	CATIONS IN REAL ENVIRONMENTS	© CL:AIRE 9/20	11 🕖

Challenge	ISB	P&T	ISCO
Low permeability/Heterogeneity/Preferential pathways (and consequent rebound due to incomplete treatment)	•	•	•
Long treatment times	•	•	0
Biofouling	•	•	
Other Operation and Maintenance	0	•	•
Potential for mobilisation of contaminants	0	0	•
Unfavourable geochemical conditions	•	•	•
Absence of appropriate bacteria	•		
Potential for mobilisation of metals	•	0	٠
Inhibition/toxicity of contaminants / co-contaminants	•		

Geosyntec ^o In Situ Bioremediation Technology Capabilities and Relative Costs						
	 Costs Comparison: Cost estimates for full scale tr Cost model results reported b 	eatment of the SABF y ESTCP/Geosynted	RE Research Site ¹ ² for hypothetical site			
	Parameter	SABRE ¹	ESTCP/Geosyntec ²			
	Site	SABRE – UK, Midlands	Hypothetical, modelled			
	Source mass assessed (TCE, tonnes)	20	5.6			
	Aquifer Type	Unconsolic	lated alluvial			
	Total Trea	atment Costs:				
	ISB	£1.5M	£1.1M			
	Chemox	£3.0M	£1.75M	ш		
	Other Technologies	Thermal: £2.5M	P&T: £2.0M	К		
1 CL:AIRE report "Overview of the SABRE Field Tests", CL:AIRE Report SAB 5, September 2010 2 ESTCP "Remediation of DNAPL through Sequential In Situ Chemical Oxidation and Bioaugmentation", ESTCP Project ER-0116, April 2009						
30	CONTAMINATED LAND: APPLICATIONS IN REAL ENVIRONMENTS		© CL:AIRE 9/2011	U		

Head-to-Head Comparison				
	<u>ERH</u>	<u>ISTD</u>	<u>STAR</u>	
Temperature	< 100 °C	< 500 to 700 °C	>1000 °C	
Mechanisms	Volatilization, steam stripping	Oxidation, pyrolysis	Smoldering combustion	
Energy Requirements	Continuous	Continuous	Localized short duration	
Operational Timeframe	Weeks to Months	Months	Days to Weeks	
Cost	\$100 to \$140/CY	\$150 to \$300/CY	\$60 to 120/CY	
NTAMINATED SAND: APPLICATIONS IN RE	FAL ENVIRONMENTS		© CL:AIRE 9/2	011

Ge	Geosyntec ^D consultants Geoscience			
	Head-to-Head C	omparison - ERH		
	<u>Benefits</u>	<u>Limitations</u>		
	Rapid source area treatment	Energy intensive		
	Unaffected by Heterogeneity	Potential high costs		
	Conducive to bioremediation polishing	Not suitable for all compounds of interest		
		Requires collection and treatment of vapors	ш	
			AIR	
38	CONTAMINATED LAND: APPLICATIONS IN REAL ENVIRONMENTS	© CL:AIRE 9/2011	J	

eosyntec ^D consultants	Groundteater & Ge	ON Inscience
Head-to-Head C	omparison - ISTD	
<u>Benefits</u>	<u>Limitations</u>	
Rapid source area treatment	Energy intensive	
Unaffected by Heterogeneity	Potential high costs	
In situ contaminant destruction (oxidation/pyrolysis)	Possibly produce toxic byproducts	
		I: AIRF

Geo	Geosyntec ^D consultants Groundwater & Geoscience				
	Head-to-Head Co	omparison - STAR			
	<u>Benefits</u>	<u>Limitations</u>			
	Rapid source area treatment	Collection of vapors may be required			
	Low energy requirements	Generally used for low-volatility DNAPLs			
	In situ contaminant destruction	Minimum concentrations / saturation to be self-sustaining			
	Targeted and controllable		IRE		
40	CONTRAMINATED LAND, APPLICATIONS IN REAL ENVIRONMENTS	© CL:AIRE 9/2011	CLEA		

	Average Concent	ration (mg/kg)	
Compound	Before STAR Treatment	Combustion Zone T > 600 °C	_
2,4-Dimethylphenol	635	1	
2-Methylnaphthalene	7,900	10	
2-Methylphenol	475	3	
4-Methylphenol	595	5	
Acenaphthene	3,950	6	
Acenaphthylene	295	1	
Anthracene	16,700	10	
Benzene	36	0	
Benzo(a)anthracene	775	2	Average
Benzo(a)pyrene	505	1	/ Wellage
Benzo(b)fluoranthen	e 640	2	Concentration
Benzo(g,h,i)perylene	255	1	Concentration
Benzo(k)fluoranthen	e 240	1	Deduction - 00 72
Carbazole	6,750	2	Reduction -99.72
Chrysene	870	3	
Dibenzo(a,h)anthrace	ene 60	0	
Dibenzofuran	3,850	7	
Ethylbenzene	40	0	
Fluoranthene	3,750	11	
Fluorene	5,150	7	
(ndeno(1,2,3-cd)pyre	ne 220	1	
Naphthalene	29,500	63	
Phenanthrene	10,850	21	
Pyrene	2,550	8	
Toluene	130	0	
Xylenes (total)	225	0	
TPH-DRO soil C10-C28	* 118,000	243	
TPH-GRO soil C6-C10	1,300	7	

Ge	osyntec P consultants	EISB Performance	ON oscience
	Parameter	General Result	
	Methane	>10,000 µg/L	
	DO, ORP	DO < 1mg/L, ORP < -70 mV	
	Anions – SO4, NO3 Cl	Nitrate and sulfate near depleted Chloride increase by 10 to 100 mg/L from Q1 to Q2	
	тос	Increase by >100 mg/L	
	Dehalococcoides	Increase by Order of Magnitude	
	рН	Temporary decrease	
	ERH Residual Heat	Post-ERH (Jan '10): up to 37°C Baseline (June '10): 26 - 37°C Q1 (Sept '10): 28 - 34°C Q2 (Jan '11): 17 - 26°C	RE
62	CONTAMINATED LAND: APPLICATIONS IN REAL	ENVIRONMENTS © CL:AIRE 9/2011	CEAL

